

A Fibre, WDM and Networking project @ KTH/CSD master program 2009

Explore new ways for infrastructure

Motivation:

Optical gear affordable
New techniques like WDM
Computers very powerful
Need for communication

Project

Connect two campuses with dark fibre Network and routing should also be setup Use WDM if possible with budget

We don't have all optical instruments
Use what we got → PC's and skilled master
Students.

Requirements

KTH campuses Kista-VV is 10km apart
Fiber distance is 20km
Research project need >1 Gbit/s → 10 Gbit/s
Other applications separate 1 Gbit/s links

Optical Modules

GBIC (older)
SFP Gigabit
SFP+ 10G
X2 10G (older)
XFP 10G

And even more form factors

Optical modules example

Optical Modules

Basic wavelengths 850, 1310, 1550 nm Different ranges optical budget varies from 300 meter to 16 km

CWDM and DWDM versions available too

Optical Modules

Volume market

Look at ebay

Be aware...

Some vendors only support their own brand

XFP Optical modules

XFP's are 10G and available for Long Range

XFP Optical modules

XFP's uses LC-connectors

XFP Interface Board

SUN Neptune 10g PCle x8

Optical statistics

Optical related data from I2C bus (2 pins in the connector)

RX power
TX power
Voltage
Temperature

Also some proprietary data...

Optical statistics

Be aware...

Not all modules supports statistics

Not all optical gear can read out the stats

Optical modules/our choice

XFP module 10 Gbit/s 1310 nm, 10 km Finisar XFP module 10 Gbit/s 1550 nm, 40 km Finisar SUN Neptune 10g NIC could host 2 XFP's

Still testing:

SFP cheap even up to 120 km and 160 km SFP is affordable even for CWDM

WDM

Wavelength Division-Multiplexing

WDM → DWDM and CWDM
Different wavelengths can coexist
CDWM → Coarse WDM
normally 20 nm apart

Can be passive and very cheap

CWDM MUX/DEMUX 4 Ports

Price idea 600 Euro

CWDM MUX/DEMUX 8 Ports

Can be stacked

CWDM MUX/DEMUX 16 Ports

Functional view 1300 nm CWDM

Lab setup and testing

Optical verification and budget by attenuation

Test#	Attenuators	10Gb/s link		1Gb/s link	
		Mb/s	Packetloss	Mb/s	Packetloss
1	8dB-5dB	3040	0%	941	0%
2	10dB-11dB	3045	0%	941	0%
3	15dB-15dB	-	100%	941	0%
4	20dB-20dB	-	100%	925	0%
5	25dB-25dB	-	100%	-	100%
6	23dB-23dB	-	100%	-	100%

A method of finding out optical budget by just using fiber attenuators We use PC/routers to send TCP data for this we use netperf program.

netperf -H 10.10.10.2

Were 10.10.10.2 is host on the other side of the link. (Which runs Netserver program)

The final result

Price idea

XFP 10G 10km 900 Euro

XFP 10G 40km 1400 Euro

SFP 1G 40km 200 Euro

SFP 1G 80km 250 Euro

SFP 1G 40km/WDM 250 Euro

WDM 4-port 650 Euro (CWDM)

Network Card 1G 4-SFP PCIe 500 Euro Network Card 10G 2-XFP PCIe 600 Euro

Report

Full report:

http://www.tslab.ssvl.kth.se/csd/projects/0911130/sites/default/files/WDM %20Test%20report-v0.3.pdf

Web site:

http://www.tslab.ssvl.kth.se/csd/projects/0911130/

Network Building Blocks

Network layers (OSI)

Switching and Routing is based on destination address

Network Routers

Data Link Switches

Physical Optical etc?

Ethernet vs IPv4 addresses

192.36.125.18

Address assignment

For Ethernet there is no need

IP
Manual
DHCP (Dynamic Host Configuration Protocol,)

IP-numbers (private)

3. Private Address Space. (RFC1918)

The Internet Assigned Numbers Authority (IANA) has reserved:

```
10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
```

Used for NAT and experiments

IP resources

- IP numbers Ipv4 (exhausted when?)
- IP numbers IPv6
- AS-numbers 16 vs 32 bit

• LIR, AfriNIC or through provider.

IPv6: What drives deployment?

- Asia and Europe
 - Smaller pools of IPv4 addresses
 - Faster at adopting new technology
 - Government-driven (ASIA)
 - Wireless (3G in Europe)
- U.S.
 - DoD announced that it will move to IPv6 by 2008
 - Public address assignment simplifies end-to-end security
- IPv6 has been added to DNS root servers
- SUNET and NorduNET runs IPv6 in core

Popular Unicast Routing Protocols

What is BGP?

Border Gateway Protocol version 4. RFC 4271

An inter-domain routing protocol for Internet

Uses the *destination-based* forwarding paradigm

Views the Internet as a collection autonomous systems. AS-numbers.

Uses TCP between *peers*

AS graph and peering relations

Cost and peering relations

Traffic patterns

That's all

Questions?