Power Effiency and Mangement

KTH/CSD course kick-off Fall 2013 Robert Olsson

Power Effiency and Mangement

Why do we care?

"Short term"

- Environmental footprint
- New applications/possibilities/products
- New deployment & installations possible
- New research fields

A Question Of Balanace

Environmental footprint Long time survival, we have no options.

Less power → Less heat Less greenhouse gases including CO2 Less use of natural resources, metals etc

"The Sun provides Earth with as much energy every hour as human civilization uses every year "

Nature 443, 19-22 (7 September 2006) | doi:10.1038/443019a; Published online 6 September 2006

Solar Radiation

Averaged Solar Radiation 1990-2004

Realized by Michel Albuisson, Mireille Lefèvre, Lucien Wald. Edited and produced by Thierry Ranchin. Date of production: 23 November 2006. Centre for Energy and Processes, Ecole des Mines de Paris / Armines / CNRS. Copyright: Ecole des Mines de Paris / Armines 2006. All rights reserved.

Insolation North-South

Power and Energy is not all

Solving the energy problem can help us solving our major Problems:

- Water
- Food/Land
- Sustainability of resources
- Population growth

Arable land

Foodprint. \rightarrow Size of land needed for 1 person Global available 0.22 ha arable land per person

- World citizen uses 0.29 ha
- Sweden 0.46 uses ha
- World 2025 is 0.19 ha avaible (8 Billions)

World's birth, mortality, growth

World's annual birth, mortality and growth rate:

- Birth: 1.915%,
- Mortality 0.812%
- Growth: 1.092%

Source: CIA World Factbook (ISSN 1553-8133)

World's population 2011:

7 Billion people

Source: United Nations Population Fund. Estimate 31.10.2011

Gives an increase of approx 210.000 people/day

Challenging economics

A discussed work:

Prosperity without growth (Economics for a Finite Planet)

Tim Jackson

Power Effiency and Mangement Motivation

New applications/possibilities/products

- Networking devices, new environments
 - Powered by renewable energi
 - Longer running time for battery operated
 Devices as laptop and mobiles etc.
 - Lot's of new possibilties
- New deployment & installations possible

Research & Development

Areas of research

- Operating systems
- Network archtecture/routing protocol
- Hardware development/sleep modes etc
- Sensors
- Grid optimization and mini-grids
- Social/professional networking
- Etc

Power Effiency and Mangement

Major tasks:

- Energy capture/harvest/collection
- Energy storage
- Energy transformation

Solar technology

Photovoltage Comercial Solar Technology

- Sun ~1000 Watt/m²
- Silicon-based monocristalline. Effeiency.12-20%
- Silicon-based polycristalline. Effeiency. 12-20%
- Heat (indirect solar)
- Thin-film based. Many variants. Lower effciency

Power In The Wind

 $P = \frac{1}{2}$ * air density * swept area * windspeed³

- Air density 1.23 kg/m³ (at sea level)
- Sweet area = $r^2 * \pi$

Further fluid dynamics limits power to 59.20%. Betz limit. (Albert Betz 1919)

Power In The Wind/Example

 $P = \frac{1}{2}$ * air density * swept area * windspeed³

- Rotor Diameter = 2 meter
- Wind Speed = 2 meter/sec
- $P = \frac{1}{2} * 1.23 * 1^2 * \pi * 2^3$
- $P = 1.23 * \pi * 4$

<u>P = 15 Watt</u>

Next Betz limit 0.59

And we have even more losses...

Wind turbines

Wind Speed Monitoring/Bunda

Anemometer. A device that records wind speed.

Wind speed data/Bunda ~2 m/s

Energy Storage Challenges

- High Storgage Capacity
- Fast charging/Decharging
- Wide Temperature Range
- High Number Deep Cycles/Long Lifetime
- Low Price
- No rare metals, poisons etc
- Safe

Ultracapacitor Effort

Ultra-Capacitor bank with 16 caps @ 3000 Farad

Power vs Energy

DC-DC with Cap protection

Minne3 router chassies development

Low-power router w. passive cooling and power options

Power Effiency. Radio vs Fibre

- Fiber 1 mW ----> 160 km @ Gigabit Ethernet
- Radio 100 mW ----> 1000 m (approx for hi-freq)

Small grid efforts

Small grid efforts DC-DC

Small grid efforts DC-DC

KTH Thesis project.

KTH CSD/SoC project ported Contiki to board

CoAP IETF protocol, IoT-grid code.

Code available from github

Power Effiency and Mangement

Questions ?