

Introduction to embedded development IS1204

Robert Olsson, <roolss@kth.se> Fredrik Lundewall, <flu@kth.se>

hardware

Android, telephones/OTG Rpi, BB, Odroid etc small Arduino Development boards, AVR, PIC, ARM, STM Wireless development boards AVR

operating system?

None. Bare Ardunio Contiki TinyOs Android Linux

developer toolchain for building firmware

Ardunio integrated gcc, + c-library sdcc stm8, pic Android, Eclipse, traditional make Mbed, AVR studio etc

getting the toolchain/environment

Pre-built environment by vendor or project Virtual environment (Contiki) Getting compiled binaries apt-get install etc Get build scripts and build from source

programming the target uploading firmware

Serial Bootloader. Via serial port, UART, USB ISP (Special programmer for MCU) JTAG (Special programmer for MCU expensive) USB (Serial bootloader) Other

wired comm. & interfaces

USB GPIO (General-Purpose Input/Output) TTL (Transistor–Transistor Logic) Serial SPI (Serial Peripheral Interface) I2C (Inter-Integrated Circuit) RS 232

wireless comm. & interfaces

WiFi (IEEE 802.11x)
3g/4G (add ref)
Bluetooth (expired IEEE 802.15.1), BLE
IoT (IEEE 802.15.4)
ZigBee (IEEE 802.15.4)
Other ISM (The industrial, Scientific and Medical) Modules(433/868/915 MHZ)

add-ons and break-out boards

Almost everything... Just soma I2C examples

Accelerometer & gyro (MPU-6050) Magnetometer (HMC5883) Temp & RH (SHT21, SHT25) Pressure (BMP180, MS5611) Hi-RES AD converter (MCP3424) Lightning (AS3935) Gamma, beta radiation (RD3024) TTL/Pulse

break-out boards do it yourself?

Relatively easy... SHT25, MS5611, MCP3424 for WIMEA meteorological project.

RPI & USB hub unit

Beaglebone Black, TI SoC

Odroid 1.7 GHz 4 cores

Odroid XU3: 4 cores @ 2.0 GHz 4 cores @ 1.4 GHz, USB 3.0

performance vs power

Mem. latency, mem. bandwidth & idle power. Plot rev 1.7

Intel Quark @ 2.2W

Quark[™] SoC X1021 (16K Cache, 400 MHz) 512MB DDR3 ECC 2x Mini-PCI-E slots; 1x ZigBee module socket 2x 10/100Mbps LAN

32 bit

1 Core

Arduino

Contiki Programming Experiences

MCU boards w. Builtin IEEE202.15.4 radio tranceiver

WSN IEEE 802.15.4 Sensor Node

Ext. temp sens USB-TTL 6-pin cable

Rpi interface & connections

- USB
 - Beg kraft.
- Ethernet
 - 100 Mbps
 - SD-kort stort
- HDMI
- Terminal port /dev/ttyAMA0
- I2C
- SPI
- GPIO

Development Support Collaboration

Repository essential

Git, CVS, SVN Public github.com

Suggestion git

Arduino cont.

Arduino in general

- * Atmega processor family
- * Lots of "Arduino" implementations (dozens!)
 - Different verions of the processor, memory sizes etc
 - Different number of in- and output pins
 - 3.3V or 5V
- * Customized development environment "Arduio IDE"
 - Written in java, available on Windows, Mac and Linux
 - Are there any alternative? The editor sucks (on Mac at least!)
- * Very easy to get it up and running
- * Easy to find help and information on the 'net
- * Low cost hardware, cheapest development board is less than 100 kr
- * ...but you need accessories as well
 - breadboards
 - wire
 - all sorts of components, sensors etc
 - etc

Referenser

Arduino Cookbook (2nd ed,) Michael Margolis, http://shop.oreilly.com/product/0636920030935.do

http://makezine.com/2014/03/05/and-the-winner-is-2/

Lot's of info and project via web.

The One Watt Initiative IEA in 1999